A Reverse Order Hierarchical Integrated Scheduling Algorithm Considering Dynamic Time Urgency Degree of the Process Sequences

Author:

Cao WangchengORCID,Xie Zhiqiang,Yang Jing,Zhan Xiaojuan,Pei Lirong,Yu Xu

Abstract

Aiming at the general integrated scheduling problem of tree-structured complex single-product machining and assembling, a reverse order hierarchical integrated scheduling algorithm (ROHISA) is proposed by considering the dynamic time urgency degree (TUD) of process sequences (PSs). The strategy of process sorting is put forward, and the TUD of PS is defined. The process tree is reversed using leaf alignment, and according to the order from leaf to root, the scheduling order of leaf nodes in the same layer is determined layer by layer according to the TUD values of the PSs to which the leaf nodes belong. In turn, the sorted leaf nodes in each layer are stored in a corresponding layered array (LA). Finally, the elements in each LA are reversed, and the LAs’ arranging order is reversed. A reverse order hierarchical scheduling strategy is proposed. Starting from the root node, every LA is taken as a unit to conduct trial scheduling each time. Under the condition of meeting the craft constraints, a set of quasi-scheduling schemes of same-layer processes (QSSSLP) is obtained, and the one with the minimum end time is selected from it as the scheduling scheme of the same layer processes (SSSLP). If it is not unique, the QSSSLP that machines all the same layer processes (SLP) as early as possible is selected. The research shows that the ROHISA optimizes the integrated scheduling results of single-product manufacturing enterprises and improves its production efficiency.

Funder

National Natural Science Foundation of China

key scientific research project of Heilongjiang Provincial Education Department

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3