Abstract
As photovoltaic (PV) power plants are an essential component of modern smart grids, the PV generation forecasting of such plants has recently been gaining interest. The forecasting results of PV power often suffer from large errors because of unusual weather conditions. In a learning-based forecasting model, the forecasting accuracy can be enhanced by using carefully selected data for training rather than all the data without any screening. That is, using a training set that only contains information obtained from similar days can help enhance the accuracy of learning-based PV forecasting. This paper proposes a forecasting method for small-scale PV generation. This method is based on long short-term memory; further, it detects similar days considering the different impacts of weather variables on PV power according to the day. This method can address issues caused by unnecessary learning from non-similar historical days. The simulation results demonstrate that the proposed method exhibits better performance than do existing similar day detection methods.
Funder
National Research Foundation of Korea
Korea Electric Power Corporation
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献