Object Detection in Sonar Images

Author:

Karimanzira Divas,Renkewitz Helge,Shea David,Albiez Jan

Abstract

The scope of the project described in this paper is the development of a generalized underwater object detection solution based on Automated Machine Learning (AutoML) principles. Multiple scales, dual priorities, speed, limited data, and class imbalance make object detection a very challenging task. In underwater object detection, further complications come in to play due to acoustic image problems such as non-homogeneous resolution, non-uniform intensity, speckle noise, acoustic shadowing, acoustic reverberation, and multipath problems. Therefore, we focus on finding solutions to the problems along the underwater object detection pipeline. A pipeline for realizing a robust generic object detector will be described and demonstrated on a case study of detection of an underwater docking station in sonar images. The system shows an overall detection and classification performance average precision (AP) score of 0.98392 for a test set of 5000 underwater sonar frames.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference17 articles.

1. ImageNet classification with deep convolutional neural networks

2. DetNAS: Backbone Search for Object Detection;Chen;arXiv,2019

3. Fast Neural Network Adaptation via Parameter Remapping and Architecture Search;Fang;arXiv,2020

4. Fast R-CNN

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3