A Review on Evaluation and Configuration of Fault Injection Attack Instruments to Design Attack Resistant MCU-Based IoT Applications

Author:

Kazemi Zahra,Hely DavidORCID,Fazeli Mahdi,Beroulle VincentORCID

Abstract

The Internet-of-Things (IoT) has gained significant importance in all aspects of daily life, and there are many areas of application for it. Despite the rate of expansion and the development of infrastructure, such systems also bring new concerns and challenges. Security and privacy are at the top of the list and must be carefully considered by designers and manufacturers. Not only do the devices need to be protected against software and network-based attacks, but proper attention must also be paid to recently emerging hardware-based attacks. However, low-cost unit software developers are not always sufficiently aware of existing vulnerabilities due to these kinds of attacks. To tackle the issue, various platforms are proposed to enable rapid and easy evaluation against physical attacks. Fault attacks are the noticeable type of physical attacks, in which the normal and secure behavior of the targeted devices is liable to be jeopardized. Indeed, such attacks can cause serious malfunctions in the underlying applications. Various studies have been conducted in other research works related to the different aspects of fault injection. Two of the primary means of fault attacks are clock and voltage fault injection. These attacks can be performed with a moderate level of knowledge, utilizing low-cost facilities to target IoT systems. In this paper, we explore the main parameters of the clock and voltage fault generators. This can help hardware security specialists to develop an open-source platform and to evaluate their design against such attacks. The principal concepts of both methods are studied for this purpose. Thereafter, we conclude our paper with the need for such an evaluation platform in the design and production cycle of embedded systems and IoT devices.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3