Dealing with Lack of Training Data for Convolutional Neural Networks: The Case of Digital Pathology

Author:

Ponzio Francesco,Urgese Gianvito,Ficarra Elisa,Di Cataldo SantaORCID

Abstract

Thanks to their capability to learn generalizable descriptors directly from images, deep Convolutional Neural Networks (CNNs) seem the ideal solution to most pattern recognition problems. On the other hand, to learn the image representation, CNNs need huge sets of annotated samples that are unfeasible in many every-day scenarios. This is the case, for example, of Computer-Aided Diagnosis (CAD) systems for digital pathology, where additional challenges are posed by the high variability of the cancerous tissue characteristics. In our experiments, state-of-the-art CNNs trained from scratch on histological images were less accurate and less robust to variability than a traditional machine learning framework, highlighting all the issues of fully training deep networks with limited data from real patients. To solve this problem, we designed and compared three transfer learning frameworks, leveraging CNNs pre-trained on non-medical images. This approach obtained very high accuracy, requiring much less computational resource for the training. Our findings demonstrate that transfer learning is a solution to the automated classification of histological samples and solves the problem of designing accurate and computationally-efficient CAD systems with limited training data.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3