Author:
Cheng Shan,Feng Yichen,Wang Xianning
Abstract
To improve the computation efficiency of optimally dispatching large-scale cluster electric vehicles (EVs) and to enhance the profit of a charging station (CS) for EVs, this study investigates the optimal dispatch of the CS based on a decentralized optimization method and a time-of-use (TOU) price strategy. With the application of the Lagrange relaxation method (LRM), a decentralized optimization model with its solution is proposed that converts the traditional centralized optimization model into certain sub-problems. The optimization model aims to maximize the profit of CS, but it comprehensively considers the charging preference of EV users, the operation constraints of the distribution network, and the TOU strategy adopted by the CS. To validate the proposed decentralized optimal dispatching method, a series of numerical simulations were conducted to demonstrate its effect on the computation efficiency and stability, the profit of the CS, and the peak-load shifting. The result indicates that the TOU strategy markedly increases the profit of the CS in comparison with the fixed electricity price mechanism, and the computation efficiency and stability are much better than those of the centralized optimization method. Although it does not compensate the load fluctuation completely, the proposed method with the TOU strategy is helpful for filling the valley of power use.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献