Two-Phase PFAC Algorithm for Multiple Patterns Matching on CUDA GPUs

Author:

Lai Wei-Shen,Wu Chao-Chin,Lai Lien-Fu,Sie Min-Chi

Abstract

The rapid advancement of high speed networks has resulted in a significantly increasing number of network packets per second nowadays, implying network intrusion detection systems (NIDSs) need to accelerate the inspection of packet content to protect the computer systems from attacks. On average, the pattern matching process in a NIDS consumes approximately 70% of the overall processing time. The conventional Aho–Corasick (AC) algorithm, adopting a finite state machine to identify attack patterns in NIDSs, is too slow to meet the requirement of high speed networks. In view of this, several studies have used the features of a graphics processing unit (GPU) to improve the core searching process of the AC algorithm. For instance, parallel failureless Aho-Corasick (PFAC) algorithm improves the process of pattern matching effectively by removing backward branches in the original finite state machine created using the AC algorithm. In this way, boundary detection can be avoided totally if we allocate an individual thread to each byte of an input stream to identify any pattern starting at the thread’s starting position. However, through analysis, we found that this algorithm experiences a serious load imbalance problem. Therefore, this paper proposes a two-phase PFAC algorithm to address the problem. A threshold is predefined to divide execution into two phases, and the failureless finite state machine is also decoupled into two parts accordingly. In the first phase, every thread identifies patterns by running the tiny part of the decoupled failureless finite state machine that are stored in fast shared memory. In the second phase, all the threads requiring further searching in a same block are regrouped into a few warps for less branch divergence. According to experimental results, the proposed algorithm shows a performance improvement of 50% compared to the PFAC algorithm.

Funder

Ministry of Science and Technology, Taiwan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference37 articles.

1. Intrusion detection system using data mining technique: Support vector machine;Bhavsar;Int. J. Emerg. Technol. Adv. Eng.,2013

2. SNORThttps://www.snort.org/

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3