Abstract
The recent developments in fog computing architecture and cloud of things (CoT) technology includes data mining management and artificial intelligence operations. However, one of the major challenges of this model is vulnerability to security threats and cyber-attacks against the fog computing layers. In such a scenario, each of the layers are susceptible to different intimidations, including the sensed data (edge layer), computing and processing of data (fog (layer), and storage and management for public users (cloud). The conventional data storage and security mechanisms that are currently in use appear to not be suitable for such a huge amount of generated data in the fog computing architecture. Thus, the major focus of this research is to provide security countermeasures against medical data mining threats, which are generated from the sensing layer (a human wearable device) and storage of data in the cloud database of internet of things (IoT). Therefore, we propose a public-permissioned blockchain security mechanism using elliptic curve crypto (ECC) digital signature that that supports a distributed ledger database (server) to provide an immutable security solution, transaction transparency and prevent the patient records tampering at the IoTs fog layer. The blockchain technology approach also helps to mitigate these issues of latency, centralization, and scalability in the fog model.
Funder
National Natural Science Foundation of China-Henan Joint Fund
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献