Virtual Network Provisioning over Mixed-Fixed/Flexible-Grid Optical Infrastructures

Author:

Yu XiaosongORCID,Lu Lu,Zhao YongliORCID,Wang Feng,Nag AvishekORCID,Li Xinghua,Zhang Jie

Abstract

With the emergence of cloud services based on data centers, demands for bandwidth-intensive applications have increased dramatically, and application services have transferred to a more diversified direction. Management as well as capacity of the backbone network needs further development to catch up with rapidly evolved application demands. Optical network virtualization can facilitate the sharing of physical infrastructure among multiple network applications. Virtual Network Embedding (VNE), the main implementation of network virtualization, determines how to map a virtual network request onto physical substrate. To expand the network capacity, flexible-grid elastic optical networks have been considered as a promising supporting technology for the future infrastructure of the next-generation Internet. However, due to the expense of key enabling equipment for flexible grid optical networks, the brown-field migration from a fixed grid to a flexible grid gave birth to the co-existing fixed/flexible grid. Based on the co-existing fixed/flexible grid optical networks, we investigate the problem of Virtual Optical Network (VON) provisioning, and present a flexible-grid-aware virtual network embedding algorithm to map the virtual networks onto the substrate network. In addition, the performance of the algorithm was evaluated under four different network scenarios. Simulation results show that the proposed algorithm can achieve better performance in all four scenarios.

Funder

fund of science and technology research and development project of Yinchuan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3