A Method for Fast Selection of Machine-Learning Classifiers for Spam Filtering

Author:

Rapacz Sylwia,Chołda PiotrORCID,Natkaniec MarekORCID

Abstract

The paper elaborates on how text analysis influences classification—a key part of the spam-filtering process. The authors propose a multistage meta-algorithm for checking classifier performance. As a result, the algorithm allows for the fast selection of the best-performing classifiers as well as for the analysis of higher-dimensionality data. The last aspect is especially important when analyzing large datasets. The approach of cross-validation between different datasets for supervised learning is applied in the meta-algorithm. Three machine-learning methods allowing a user to classify e-mails as desirable (ham) or potentially harmful (spam) messages were compared in the paper to illustrate the operation of the meta-algorithm. The used methods are simple, but as the results showed, they are powerful enough. We use the following classifiers: k-nearest neighbours (k-NNs), support vector machines (SVM), and the naïve Bayes classifier (NB). The conducted research gave us the conclusion that multinomial naïve Bayes classifier can be an excellent weapon in the fight against the constantly increasing amount of spam messages. It was also confirmed that the proposed solution gives very accurate results.

Funder

Narodowe Centrum Badań i Rozwoju

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference47 articles.

1. 15 Outrageous Email Spam Statistics that Still Ring True in 2018https://www.propellercrm.com/blog/email-spam-statistics

2. Internet Security Threat Reporthttps://www.symantec.com/content/dam/symantec/docs/reports/istr-24-2019-en.pdf

3. The history of digital spam

4. Machine learning for email spam filtering: review, approaches and open research problems

5. Machine Learning Methods for Spam E-Mail Classification

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3