Adaptive Sparse Representation of Continuous Input for Tsetlin Machines Based on Stochastic Searching on the Line

Author:

Abeyrathna Kuruge Darshana,Granmo Ole-Christoffer,Goodwin Morten

Abstract

This paper introduces a novel approach to representing continuous inputs in Tsetlin Machines (TMs). Instead of using one Tsetlin Automaton (TA) for every unique threshold found when Booleanizing continuous input, we employ two Stochastic Searching on the Line (SSL) automata to learn discriminative lower and upper bounds. The two resulting Boolean features are adapted to the rest of the clause by equipping each clause with its own team of SSLs, which update the bounds during the learning process. Two standard TAs finally decide whether to include the resulting features as part of the clause. In this way, only four automata altogether represent one continuous feature (instead of potentially hundreds of them). We evaluate the performance of the new scheme empirically using five datasets, along with a study of interpretability. On average, TMs with SSL feature representation use 4.3 times fewer literals than the TM with static threshold-based features. Furthermore, in terms of average memory usage and F1-Score, our approach outperforms simple Multi-Layered Artificial Neural Networks, Decision Trees, Support Vector Machines, K-Nearest Neighbor, Random Forest, Gradient Boosted Trees (XGBoost), and Explainable Boosting Machines (EBMs), as well as the standard and real-value weighted TMs. Our approach further outperforms Neural Additive Models on Fraud Detection and StructureBoost on CA-58 in terms of the Area Under Curve while performing competitively on COMPAS.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3