Persona-Identified Chatbot through Small-Scale Modeling and Data Transformation

Author:

Keum Bitna1ORCID,Sun Juoh1,Lee Woojin1ORCID,Park Seongheum1,Kim Harksoo2ORCID

Affiliation:

1. Department of Artificial Intelligence, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

2. Division of Computer Science and Engineering & Department of Artificial Intelligence, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea

Abstract

Research on chatbots aimed at facilitating more natural and engaging conversations is actively underway. With the growing recognition of the significance of personas in this context, persona-based conversational research is gaining prominence. Despite the abundance of publicly available chit-chat datasets, persona-based chat datasets remain scarce, primarily due to the higher associated costs. Consequently, we propose a methodology for transforming extensive chit-chat datasets into persona-based chat datasets. Simultaneously, we propose a model adept at effectively incorporating personas into responses, even with a constrained number of parameters. This model can discern the most relevant information from persona memory without resorting to a retrieval model. Furthermore, it makes decisions regarding whether to reference the memory, thereby enhancing the interpretability of the model’s judgments. Our CC2PC framework demonstrates superior performance in both automatic and LLM evaluations when compared to high-cost persona-based chat dataset. Additionally, experimental results on the proposed model indicate the improved persona-based response capabilities.

Funder

Konkuk University Researcher Fund

Korea governmen

Publisher

MDPI AG

Reference34 articles.

1. Li, J., Galley, M., Brockett, C., Spithourakis, G., Gao, J., and Dolan, B. (2016, January 7–12). A Persona-Based Neural Conversation Model. Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany.

2. From Eliza to XiaoIce: Challenges and Opportunities with Social Chatbots;Shum;Front. Inf. Technol. Electron. Eng.,2018

3. Zhang, S., Dinan, E., Urbanek, J., Szlam, A., Kiela, D., and Weston, J. (2018, January 15–20). Personalizing Dialogue Agents: I have a dog, do you have pets too?. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia.

4. Dinan, E., Logacheva, V., Malykh, V., Miller, A., Shuster, K., Urbanek, J., Kiela, D., Szlam, A., Serban, I., and Lowe, R. (2020). NeurIPS’18 Competition: From Machine Learning to Intelligent Conversations, Springer.

5. Jang, Y., Lim, J., Hur, Y., Oh, D., Son, S., Lee, Y., Shin, D., Kim, S., and Lim, H. (March, January 22). Call for Customized Conversation: Customized Conversation Grounding Persona and Knowledge. Proceedings of the AAAI Conference on Artificial Intelligence, Virtual.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3