Pushing the Boundaries of Solar Panel Inspection: Elevated Defect Detection with YOLOv7-GX Technology

Author:

Wang Yin1,Zhao Jingyong1ORCID,Yan Yihua2,Zhao Zhicheng1,Hu Xiao1

Affiliation:

1. College of Electronic Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China

2. The University of Sydney Engineering and Computer Science, Sydney 2006, Australia

Abstract

During the maintenance and management of solar photovoltaic (PV) panels, how to efficiently solve the maintenance difficulties becomes a key challenge that restricts their performance and service life. Aiming at the multi-defect-recognition challenge in PV-panel image analysis, this study innovatively proposes a new algorithm for the defect detection of PV panels incorporating YOLOv7-GX technology. The algorithm first constructs an innovative GhostSlimFPN network architecture by introducing GSConv and depth-wise separable convolution technologies, optimizing the traditional neck network structure. Then, a customized 1 × 1 convolutional module incorporating the GAM (Global Attention Mechanism) attention mechanism is designed in this paper to improve the ELAN structure, aiming to enhance the network’s perception and representation capabilities while controlling the network complexity. In addition, the XIOU loss function is introduced in the study to replace the traditional CIOU loss function, which effectively improves the robustness and convergence efficiency of the model. In the training stage, the sample imbalance problem is effectively solved by implementing differentiated weight allocations for different images and categories, which promotes the balance of the training process. The experimental data show that the optimized model achieves 94.8% in the highest mAP value, which is 6.4% higher than the original YOLOv7 network, significantly better than other existing models, and provides solid theoretical and technical support for further research and application in the field of PV-panel defect detection.

Funder

Shanxi Provincial Scientific and Technological Achievement Transformation Guidance Special Program

Shanxi Key R&D Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3