On the Regularization of Recursive Least-Squares Adaptive Algorithms Using Line Search Methods

Author:

Stanciu Cristian-Lucian1,Anghel Cristian1,Fîciu Ionuț-Dorinel12ORCID,Elisei-Iliescu Camelia1,Udrea Mihnea-Radu1,Stanciu Lucian1

Affiliation:

1. Department of Telecommunications, National University of Science and Technology Politehnica Bucharest, 1–3, Iuliu Maniu Blvd., 061071 Bucharest, Romania

2. Academy of Romanian Scientists, Ilfov 3, 050044 Bucharest, Romania

Abstract

Stereophonic acoustic echo cancellation (SAEC) requires the identification of four unknown impulse responses corresponding to four loudspeaker-to-microphone pairs. Recent developments in the field of adaptive filters for SAEC setups have allowed for the handling of a single complex-valued adaptive impulse response, instead of the four classical real-valued adaptive filters. With the simplified framework provided by the widely linear (WL) model, more advanced versions of recursive least-squares (RLS) were employed in order to take advantage of their superior tracking speeds when working with highly correlated input signals (such as speech). Despite the performances and numerical stability provided by using exponentially weighted versions of the RLS family in combination with line search methods (LSMs), the SAEC configurations have limited capabilities in mitigating the negative effects caused by high-level disturbances affecting the two microphone signals. Such is the case of double-talk scenarios, which considerably reduce the update accuracy of the adaptive system. This paper analyzes a regularization technique for the named WL-RLS-LSM adaptive filters by adjusting the correlation matrix associated with the input signals and creating a reaction in the update process. The proposed method is designed to considerably slow (or even freeze) the adaptation process while the disturbance is manifested. Simulation results are discussed in order to validate the theoretical content.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3