An Improved Transformer Model for Remaining Useful Life Prediction of Lithium-Ion Batteries under Random Charging and Discharging

Author:

Zhang Wenwen1,Jia Jianfang1ORCID,Pang Xiaoqiong2ORCID,Wen Jie1ORCID,Shi Yuanhao1ORCID,Zeng Jianchao2

Affiliation:

1. School of Electrical and Control Engineering, North University of China, Taiyuan 030051, China

2. School of Computer Science and Technology, North University of China, Taiyuan 030051, China

Abstract

With the development of artificial intelligence and deep learning, deep neural networks have become an important method for predicting the remaining useful life (RUL) of lithium-ion batteries. In this paper, drawing inspiration from the transformer sequence-to-sequence task’s transformation capability, we propose a fusion model that integrates the functions of the stacked denoising autoencoder (SDAE) and the Transformer model in order to improve the performance of RUL prediction. Firstly, the health factors under three different conditions are extracted from the measurement data as model inputs. These conditions include constant current and voltage, random discharge, and the application of principal component analysis (PCA) for dimensionality reduction. Then, SDAE is responsible for denoising and feature extraction, and the Transformer model is utilized for sequence modeling and RUL prediction of the processed data. Finally, accurate prediction of the RUL of the four battery cells is achieved through cross-validation and four sets of comparison experiments. Three evaluation metrics, MAE, RMSE, and MAPE, are selected, and the values of these metrics are 0.170, 0.202, and 19.611%, respectively. The results demonstrate that the proposed method outperforms other prediction models in terms of prediction accuracy, robustness, and generalizability. This provides a new solution direction for the daily life prediction research of lithium-ion batteries.

Funder

the National Natural Science Foundation of China

the Key Project of Science and Technology of Shanxi province

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3