Population Game-Assisted Multi-Agent Reinforcement Learning Method for Dynamic Multi-Vehicle Route Selection

Author:

Yan Liping1ORCID,Cai Yu1ORCID

Affiliation:

1. Software School, East China Jiaotong University, Nanchang 330013, China

Abstract

To address urban traffic congestion, researchers have made various efforts to mitigate issues such as prolonged travel time, fuel wastage, and pollutant emissions. These efforts primarily involve microscopic route selection from the vehicle perspective, multi-vehicle route optimization based on traffic flow information and historical data, and coordinated route optimization that models vehicle interaction as a game behavior. However, existing route selection algorithms suffer from limitations such as a lack of heuristic, low dynamicity, lengthy learning cycles, and vulnerability to multi-vehicle route conflicts. To further alleviate traffic congestion, this paper presents a Period-Stage-Round Route Selection Model (PSRRSM), which utilizes a population game between vehicles at each intersection to solve the Nash equilibrium. Additionally, a Period Learning Algorithm for Route Selection (PLA-RS) is proposed, which is based on a multi-agent deep deterministic policy gradient. The algorithm allows the agents to learn from the population game and eventually transition into autonomous learning, adapting to different decision-making roles in different periods. The PSRRSM is experimentally validated using the traffic simulation platform SUMO (Simulation of Urban Mobility) in both artificial and real road networks. The experimental results demonstrate that PSRRSM outperforms several comparative algorithms in terms of network throughput and average travel cost. This is achieved through the coordination of multi vehicle route optimization, facilitated by inter-vehicle population games and communication among road agents during training, enabling the vehicle strategies to reach a Nash equilibrium.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangxi Province

Publisher

MDPI AG

Reference37 articles.

1. A review of traffic congestion prediction using artificial intelligence;Akhtar;J. Adv. Transp.,2021

2. Proposal of a Roundabout Solution within a Particular Traffic Operation;Stopka;Open Eng.,2016

3. Route control of traffic in urban road networks: Review and principles;Akcelik;Transp. Res.,1977

4. A new algorithm based on Dijkstra for vehicle path planning considering intersection attribute;Zhu;IEEE Access,2021

5. Application of improved A* algorithm in customized bus path planning;Liu;Comput. Sci. Appl.,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3