Immersive Emotion Analysis in VR Environments: A Sensor-Based Approach to Prevent Distortion

Author:

Joo Jae-Hong1ORCID,Han Seung-Hyun1ORCID,Park Inyoung2,Chung Tae-Sun1ORCID

Affiliation:

1. Department of Artificial Intelligence, Ajou University, Suwon 16499, Republic of Korea

2. Major of Metaverse Convergent Contents, Seoul Women’s University, 621 Hwarang-ro, Nowon-gu, Seoul 01797, Republic of Korea

Abstract

As virtual reality (VR) technology advances, research has focused on enhancing VR content for a more realistic user experience. Traditional emotion analysis relies on surveys, but they suffer from delayed responses and decreased immersion, leading to distorted results. To overcome these limitations, we propose an emotion analysis method using sensor data in the VR environment. Our approach can take advantage of the user’s immediate response and not reduce immersion. Linear regression, classification analysis, and tree-based methods were applied to electrocardiogram and galvanic skin response (GSR) sensor data to measure valence and arousal values. We introduced a novel emotional dimension model by analyzing correlations between emotions and the valence and arousal values. Experimental results demonstrated the highest accuracy of 77% and 92.3% for valence and arousal prediction, respectively, using GSR sensor data. Furthermore, an accuracy of 80.25% was achieved in predicting valence and arousal using nine emotions. Our proposed model improves VR content through more accurate emotion analysis in a VR environment, which can be useful for targeting customers in various industries, such as marketing, gaming, education, and healthcare.

Funder

Institute of Information & communications Technology Planning & Evaluation

Korea government

Seoul Women’s University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3