An Abnormal Account Identification Method by Topology Feature Analysis for Blockchain-Based Transaction Network

Author:

Yue Yuyu1,Zhang Jixin1,Zhang Mingwu12ORCID,Yang Jia1

Affiliation:

1. School of Computer Science, Hubei University of Technology, Wuhan 430068, China

2. School of Computer Science and Information Security, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

Cryptocurrency, as one of the most successful applications of blockchain technology, has played a vital role in promoting the development of the digital economy. However, its anonymity, large scale of cryptographic transactions, and decentralization have also brought new challenges in identifying abnormal accounts and preventing abnormal transaction behaviors, such as money laundering, extortion, and market manipulation. Recently, some researchers have proposed efficient and accurate abnormal transaction detection based on machine learning. However, in reality, abnormal accounts and transactions are far less common than normal accounts and transactions, so it is difficult for the previous methods to detect abnormal accounts by training with such an imbalance in abnormal/normal accounts. To address the issues, in this paper, we propose a method for identifying abnormal accounts using topology analysis of cryptographic transactions. We consider the accounts and transactions in the blockchain as graph nodes and edges. Since the abnormal accounts may have special topology features, we extract topology features from the transaction graph. By analyzing the topology features of transactions, we discover that the high-dimensional sparse topology features can be compressed by using the singular value decomposition method for feature dimension reduction. Subsequently, we use the generative adversarial network to generate samples like abnormal accounts, which will be sent to the training dataset to produce an equilibrium of abnormal/normal accounts. Finally, we utilize several machine learning techniques to detect abnormal accounts in the blockchain. Our experimental results demonstrate that our method significantly improves the accuracy and recall rate for detecting abnormal accounts in blockchain compared with the state-of-the-art methods.

Funder

The Major Research Plan of Hubei Province

National Natural Science foundation of China

The Natural Science Foundation of Hubei Province

The Research Foundation of Hubei University of Technology

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3