Adjusting Optical Polarization with Machine Learning for Enhancing Practical Security of Continuous-Variable Quantum Key Distribution

Author:

Zhou Zicheng12,Guo Ying23ORCID

Affiliation:

1. School of Mathematics and Statistics, Qingdao University, Qingdao 266071, China

2. School of Automation, Central South University, Changsha 410083, China

3. School of Computer, Beijing University of Posts and Telecommunications, Beijing 100876, China

Abstract

An available trick to mitigate the interference of environmental noise in quantum communications is to modulate signals with time-polarization multiplexing. Conversely, due to effects of the atmospheric turbulence in free space, the polarization of signals fluctuates randomly, resulting in feasible information leakage when direct polarization demultiplexing is carried out at the receiver, drowning out the noise-contained signals. For enhancing the practical security of the continuous-variable quantum key distribution (CVQKD), we propose a machine learning (ML) approach for optimization of the dynamic polarization control (DPC) of signals transmitted through atmospheric turbulence. An optimal DPC scheme can be adaptively adjusted with ML algorithms, which is based on the received signals at the receiver for solving the loophole problem of information leakage since it provides an accurate response to the polarization changes regarding the anamorphic signals. The performance of the CVQKD system can be increased in terms of secret key rates and maximal transmission distance as well. Numerical simulation shows the positive effect of the ML-based DPC while taking into account the secret key rate of the CVQKD system. The ML-based DPC effectively reduces the feasibility of information leakage and hence results in an increased secret key rate of the practical CVQKD system.

Funder

key research and development project in Hunan Province

Scientific Research Fund of Hunan Provincial Education Department

Hunan Provincial Education Department

Natural Science Foundation of Hunan Province

Publisher

MDPI AG

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3