Harnessing Test-Oriented Knowledge Graphs for Enhanced Test Function Recommendation

Author:

Liu Kaiqi1ORCID,Wu Ji1,Sun Qing1,Yang Haiyan1,Wan Ruiyuan2

Affiliation:

1. School of Computer Science and Engineering, Beihang University, Beijing 100191, China

2. CLOUD BU, Huawei Technologies Co., Ltd., Beijing 100191, China

Abstract

Application Programming Interfaces (APIs) have become common in contemporary software development. Many automated API recommendation methods have been proposed. However, these methods suffer from a deficit of using domain knowledge, giving rise to challenges like the “cold start” and “semantic gap” problems. Consequently, they are unsuitable for test function recommendation, which recommends test functions for test engineers to implement test cases formed with various test steps. This paper introduces an approach named TOKTER, which recommends test functions leveraging test-oriented knowledge graphs. Such a graph contains domain concepts and their relationships related to the system under test and the test harness, which is constructed from the corpus data of the concerned test project. TOKTER harnesses the semantic associations between test steps (or queries) and test functions by considering literal descriptions, test function parameters, and historical data. We evaluated TOKTER with an industrial dataset and compared it with three state-of-the-art approaches. Results show that TOKTER significantly outperformed the baseline by margins of at least 36.6% in mean average precision (MAP), 19.6% in mean reciprocal rank (MRR), and 1.9% in mean recall (MR) for the top-10 recommendations.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3