Design and Development of Knowledge Graph for Industrial Chain Based on Deep Learning

Author:

Li Yue1ORCID,Lei Yutian1,Yan Yiting1,Yin Chang1,Zhang Jiale1

Affiliation:

1. School of Computer Science and Technology, Donghua University, Shanghai 201620, China

Abstract

This paper aims to structure and semantically describe the information within the industrial chain by constructing an Industry Chain Knowledge Graph (ICKG), enabling more efficient and intelligent information management and analysis. In more detail, this paper constructs a multi-domain industrial chain dataset and proposes a method that combines the top-down establishment of a semantic expression framework with the bottom-up establishment of a data layer to build an ICKG. In the data layer, a deep learning algorithm based on BERT-BiLSTM-CRF is used to extract industry chain entities from relevant literature and reports. The results indicate that the model can effectively identify industry chain entities. These entities and relationships populate a Neo4j graph database, creating a large-scale ICKG for visual display and aiding cross-domain applications.

Funder

Natural Science Foundation of Shanghai

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference40 articles.

1. Application of DNA barcoding technology in the whole industrial chain of traditional Chinese medicine;Lou;Acta Pharm. Sin.,2020

2. Lu, H., Peng, J., and Lu, X. (2022). Do Factor Market Distortions and Carbon Dioxide Emissions Distort Energy Industry Chain Technical Efficiency? A Heterogeneous Stochastic Frontier Analysis. Energies, 15.

3. Status and Challenges of Applications and Industry Chain Technologies of Hydrogen in the Context of Carbon Neutrality;Yang;J. Clean. Prod.,2022

4. Fraud Vulnerability Quantitative Assessment of Wuchang Rice Industrial Chain in China Based on AHP-EWM and ANN Methods;Song;Food Res. Int.,2021

5. Theory and Research Advances in Whole Industrial Chain of Strategic Mineral Resources;Haizhong;Resour. Ind.,2022

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3