IoT System for Gluten Prediction in Flour Samples Using NIRS Technology, Deep and Machine Learning Techniques

Author:

Jossa-Bastidas Oscar1ORCID,Sanchez Ainhoa Osa1ORCID,Bravo-Lamas Leire2,Garcia-Zapirain Begonya1ORCID

Affiliation:

1. eVIDA Research Group, University of Deusto, 48007 Bilbao, Spain

2. Food Technology Department, Leartiker S. Coop., Xemein Etorbidea 12, 48270 Markina-Xemein, Spain

Abstract

Gluten is a natural complex protein present in a variety of cereal grains, including species of wheat, barley, rye, triticale, and oat cultivars. When someone suffering from celiac disease ingests it, the immune system starts attacking its own tissues. Prevalence studies suggest that approximately 1% of the population may have gluten-related disorders during their lifetime, thus, the scientific community has tried to study different methods to detect this protein. There are multiple commercial quantitative methods for gluten detection, such as enzyme-linked immunosorbent assays (ELISAs), polymerase chain reactions, and advanced proteomic methods. ELISA-based methods are the most widely used; but despite being reliable, they also have certain constraints, such as the long periods they take to detect the protein. This study focuses on developing a novel, rapid, and budget-friendly IoT system using Near-infrared spectroscopy technology, Deep and Machine Learning algorithms to predict the presence or absence of gluten in flour samples. 12,053 samples were collected from 3 different types of flour (rye, corn, and oats) using an IoT prototype portable solution composed of a Raspberry Pi 4 and the DLPNIRNANOEVM infrared sensor. The proposed solution can collect, store, and predict new samples and is connected by using a real-time serverless architecture designed in the Amazon Web services. The results showed that the XGBoost classifier reached an Accuracy of 94.52% and an F2-score of 92.87%, whereas the Deep Neural network had an Accuracy of 91.77% and an F2-score of 96.06%. The findings also showed that it is possible to achieve high-performance results by only using the 1452–1583 nm wavelength range. The IoT prototype portable solution presented in this study not only provides a valuable contribution to the state of the art in the use of the NIRS + Artificial Intelligence in the food industry, but it also represents a first step towards the development of technologies that can improve the quality of life of people with food intolerances.

Funder

Basque Government

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3