Design and Evaluation of Dynamic Topology for Mega Constellation Networks

Author:

Zhu Qinyu1,Wang Xinmin2,Yang Haitao1,Cao Yanhua2

Affiliation:

1. School of Aerospace Science and Technology, Space Engineering University, Beijing 101416, China

2. School of Information and Communication Engineering, Space Engineering University, Beijing 101416, China

Abstract

Due to numerous Low Earth Orbit (LEO) satellites, urgent analysis of many temporary inter-satellite links (ISLs) is necessary for mega constellation networks. Therefore, introducing a dynamic link in topology design is crucial for increasing constellation redundancy and improving routing options. This study presents one class of static topology of satellites (STLS) and two types of dynamic topology of satellites (DTLS). Firstly, a call model based on global population density distribution is determined using world population density by provincial administrative divisions. Then, using a common simulation platform, the Dijkstra algorithm obtains random paths between 10,000 pairs of urban ground stations, adopting a time slice division strategy. Finally, 3 indexes are obtained within 66-time slices: average call distance, number of hops, and total time delay. Results show that DTLS1 reduces these indexes by 3.58%, 3.72%, and 3.57%, respectively, compared with DTLS2 under the same conditions, indicating that DTLS1 has the best network performance, transmitting traffic quickly in any direction through the reverse track, thereby verifying the related hypothesis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal Continuity Expression for Network Topology of Space Information Systems;Electronics;2024-07-18

2. Topological design of low orbit mega-constellations based on inter satellite visibility;Proceedings of the 2024 3rd International Conference on Cryptography, Network Security and Communication Technology;2024-01-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3