Transient Frequency Estimation Methods for the Fast Frequency Response in Converter Control

Author:

Pfendler Anna1ORCID,Steppan Rafael1ORCID,Hanson Jutta1

Affiliation:

1. Institute of Electrical Power Supply with Integration of Renewable Energy (E5), Department of Electrical Engineering and Information Technology, Technical University of Darmstadt, 64283 Darmstadt, Germany

Abstract

In an interconnected power system, frequency control and stability are of vital importance and indicators of system-wide active power balance. The shutdown of conventional power plants leads to faster frequency changes and a steeper frequency gradient due to reduced system inertia. For this reason, the importance of electrical frequency estimation methods is increasing, among others, as an input for the control of converter-based generation plants. The aim of this work is to implement, compare, and analyze the robustness of the Phase-Locked-Loop and Zero-Crossing, Gauss–Newton, and recursive Gauss–Newton methods in time-domain simulations in Matlab/Simulink. The parameters of these methods are tuned for different scenarios in a medium-voltage testbench. The sensitive parameters of the frequency estimation methods show a linear correlation to the magnitude of the active power imbalance so a simple implementation can be designed for simulations. With the linearized parameter calculation for the frequency estimation methods, the local frequency as an input for converter control is used for the fast frequency response of a full power converter, which counteracts frequency deviations in the power system. Finally, two different implementations of the fast frequency response are compared. The Zero-Crossing Method shows the best robustness and the Phase-Locked Loop achieves the absolute best result.

Funder

Deutsche Forschungsgemeinschaft

Open Access Publishing Fund of Technical University of Darmstadt

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3