A Recommendation Algorithm Combining Local and Global Interest Features

Author:

Song Xiaoyuan12,Qin Jiwei12,Ren Qiulin12

Affiliation:

1. School of Information Science and Engineering, Xinjiang University, Urumqi 830046, China

2. Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China

Abstract

Due to the ability of knowledge graph to effectively solve the sparsity problem of collaborative filtering, knowledge graph (KG) has been widely studied and applied as auxiliary information in the field of recommendation systems. However, existing KG-based recommendation methods mainly focus on learning its representation from the neighborhood of target items, ignoring the influence of other items on the target item. The learning focuses on the local feature representation of the target item, which is not sufficient to effectively explore the user’s preference degree for the target item. To address the above issues, in this paper, an approach combining users’ local interest features with global interest features (KGG) is proposed to efficiently explore the user’s preference level for the target item, which learns the user’s local interest features and global interest features for target item through Knowledge Graph Convolutional Network and Generative Adversarial Network (GAN). Specifically, this paper first utilizes the Knowledge Graph Convolutional Network to mine related attributes on the knowledge graph to effectively capture item correlations and obtain the local feature representation of the target item, then uses the matrix factorization method to learn the user’s local interest features for target items. Secondly, it uses GAN to learn the user’s global interest features for target items from the implicit interaction matrix. Finally, a linear fusion layer is designed to effectively fuse the user’s local and global interests towards target items to obtain the final click prediction. Experimental results on three real datasets show that the proposed method not only effectively integrates the user’s local and global interests but also further alleviates the problem of data sparsity. Compared with the current baselines for knowledge graph-based systems, the KGG method achieves a maximum improvement of 8.1% and 7.6% in AUC and ACC, respectively.

Funder

the Science Fund for Outstanding Youth of Xinjiang Uygur Autonomous Region

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3