Enhancing Neural Text Detector Robustness with μAttacking and RR-Training

Author:

Liang Gongbo1ORCID,Guerrero Jesus1,Zheng Fengbo2ORCID,Alsmadi Izzat1ORCID

Affiliation:

1. College of Arts and Sciences, Texas A&M University-San Antonio, San Antonio, TX 78224, USA

2. College of Computer and Information Engineering, Tianjin Normal University, Tianjin 300387, China

Abstract

With advanced neural network techniques, language models can generate content that looks genuinely created by humans. Such advanced progress benefits society in numerous ways. However, it may also bring us threats that we have not seen before. A neural text detector is a classification model that separates machine-generated text from human-written ones. Unfortunately, a pretrained neural text detector may be vulnerable to adversarial attack, aiming to fool the detector into making wrong classification decisions. Through this work, we propose μAttacking, a mutation-based general framework that can be used to evaluate the robustness of neural text detectors systematically. Our experiments demonstrate that μAttacking identifies the detector’s flaws effectively. Inspired by the insightful information revealed by μAttacking, we also propose an RR-training strategy, a straightforward but effective method to improve the robustness of neural text detectors through finetuning. Compared with the normal finetuning method, our experiments demonstrated that RR-training effectively increased the model robustness by up to 11.33% without increasing much effort when finetuning a neural text detector. We believe the μAttacking and RR-training are useful tools for developing and evaluating neural language models.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3