Comparison between a Cascaded H-Bridge and a Conventional H-Bridge for a 5-kW Grid-Tied Solar Inverter

Author:

Bertin Thibault1ORCID,Despesse Ghislain1ORCID,Thomas Remy2

Affiliation:

1. CEA, Leti, Université Grenoble Alpes, F-38000 Grenoble, France

2. CEA, Liten, Université Grenoble Alpes, F-38000 Grenoble, France

Abstract

This paper compares the cost and efficiency of two inverter topologies for a 5-kW grid-connected solar inverter application: the Conventional H-Bridge Inverter (CHB) and the Cascaded H-Bridge Multilevel Inverter (CHBMLI). Emphasis is put on power switches and passive elements with a detailed study of the losses. Both designs respect the same constraints (cost, efficiency, and junction temperature of the transistors) to ensure a fair comparison between both topologies. The work highlights the important parameters when choosing the components (MOSFETs, capacitors, and magnetic cores for the inductors). The DC-link voltage ripple and the output AC current ripple are the key parameters for the design of the passive elements (capacitors and inductors). On top of that, the transistors MOSFETs are chosen, in both topologies, to limit the conduction losses (by selecting the Rdson) and the switching losses (by selecting the Qrr and dv/dt). Real components are picked in order to make the comparison as complete as possible. Numerical simulations are performed using the MATLAB platform. All equations and parameters are provided. A CHBMLI prototype was built with eight independent H-Bridges to validate the proposed design with thermal and efficiency measurements.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Extreme high efficiency enabled by silicon carbide (SiC) power devices;Materials Science in Semiconductor Processing;2024-03

2. Total Harmonic Distortion Reduction in Multilevel Inverters through the Utilization of the Moth–Flame Optimization Algorithm;Applied Sciences;2023-11-05

3. Fault Reduction in Cascaded H-Bridge Multilevel Inverter;2023 2nd International Conference on Edge Computing and Applications (ICECAA);2023-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3