Hybrid T-Shaped Sensor Array Composed of Acoustic Vector Sensors and Scalar Sensors

Author:

Rao Wei12ORCID,Li Yuanqing1,Li Dan2

Affiliation:

1. School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China

2. Key Laboratory for Information Science of Electromagnetic Waves and the Research Center of Smart Networks and Systems, School of Information Science and Technology, Fudan University, Shanghai 200433, China

Abstract

Through the more available acoustic information or the polarization information provided, vector sensor arrays outperform the scalar sensor arrays in accuracy of localization. However, the cost of a vector sensor array is higher than that of a scalar sensor array. To reduce the cost of a two-dimensional (2-D) vector sensor array, a hybrid T-shaped sensor array consisting of two orthogonal uniform linear arrays (ULAs) is proposed, where one ULA is composed of acoustic vector sensors and the other is composed of scalar sensors. By utilizing the cross-correlation tensor between the received signals from the two ULAs, two virtual uniform rectangular arrays (URAs) of acoustic vector sensors are obtained, and they can be combined into a larger URA. It is shown that a larger acoustic vector sensor URA with M2+1 degrees of freedom (DOFs) can be obtained from the specially designed T-shaped array with M acoustic vector sensors and 2M scalar sensors. Furthermore, by means of the proposed tensor model for the larger URA, the inter-sensor spacing can be allowed to exceed greatly a half-wavelength. Accordingly, the proposed method can achieve both a high DOF and a large array aperture. Simulation results show that the proposed method has a better performance in 2-D direction-of-arrival estimation than some existing methods under the same array cost.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3