Power Optimization in Multi-Tier Heterogeneous Networks Using Genetic Algorithm

Author:

Gachhadar Anand1,Maharjan Ram Krishna1,Shrestha Surendra1ORCID,Adhikari Nanda Bikram1ORCID,Qamar Faizan2ORCID,Kazmi Syed Hussain Ali2ORCID,Nguyen Quang Ngoc3ORCID

Affiliation:

1. Department of Electronics and Computer Engineering, Institute of Engineering, Tribhuvan University, Kathmandu 44600, Nepal

2. Center for Cyber Security, Faculty of Information Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

3. Faculty of Science and Engineering, Waseda University, Tokyo 169-0051, Japan

Abstract

The Internet of Things (IoT) connects numerous sensor nodes and devices, resulting in an increase in the bandwidth and data rates. However, this has led to a surge in data-hungry applications, which consume significant energy at battery-limited IoT nodes, causing rapid battery drainage. As a result, it is imperative to find a reliable solution that reduces the power consumption. A power optimization model utilizing a modified genetic algorithm is proposed to manage power resources efficiently and reduce high power consumption. In this model, each access point computes the optimal power using the modified genetic algorithm until it meets the fitness criteria and assigns it to each cellular user. Additionally, a weight-based user-scheduling algorithm is proposed to enhance network efficiency. This algorithm considers both the distance and received signal strength indicator (RSSI) to select a user for a specific base station. Furthermore, it assigns appropriate weights for the distance, and the RSSI helps increase the spectral efficiency performance. In this paper, the user-scheduling algorithm was assigned equal weights and combined with the power optimization model to analyze the power consumption and spectral efficiency performance metrics. The results demonstrated that the weight-based user-scheduling algorithm performed better and was supported by the optimal allocation of weights using a modified genetic algorithm. The outcome proved that the optimal allocation of transmission power for users reduced the cellular users’ power consumption and improved the spectral efficiency.

Funder

Universiti Kebangsaan Malaysia Fundamental Research Grant Scheme (FRGS) from the Ministry of Higher Education

Universiti Kebangsaan Malaysia Geran Galakan Penyelidik Muda

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3