Leveraging Software-Defined Networking for a QoS-Aware Mobility Architecture for Named Data Networking

Author:

Adnan Muhammad1,Ali Jehad2ORCID,Ayadi Manel3ORCID,Elmannai Hela4ORCID,Almuqren Latifa3,Amin Rashid56ORCID

Affiliation:

1. Department of Electronics Engineering, Kookmin University, Seoul 02707, Republic of Korea

2. Department of AI Convergence Network, Ajou University, Suwon 16499, Republic of Korea

3. Department of Information Systems, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

4. Department of Information Technology, College of Computer and Information Sciences Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

5. Department of Computer Science, Taxila University, Taxila 47050, Pakistan

6. Department of Computer Sciences, Faculty of Computing and Information Technology, University of Chakwal, Chakwal 48800, Pakistan

Abstract

The internet’s future architecture, known as Named Data Networking (NDN), is a creative way to offer content-based services. NDN is more appropriate for content distribution because of its special characteristics, such as naming conventions for packets and methods for in-network caching. Mobility is one of the main study areas for this innovative internet architecture. The software-defined networking (SDN) method, which is employed to provide mobility management in NDN, is one of the feasible strategies. Decoupling the network control plane from the data plane creates an improved programmable platform and makes it possible for outside applications to specify how a network behaves. The SDN is a straightforward and scalable network due to its key characteristics, including programmability, flexibility, and decentralized control. To address the problem of consumer mobility, we proposed an efficient SDPCACM (software-defined proactive caching architecture for consumer mobility) in NDN that extends the SDN model to allow mobility control for the NDN architecture (NDNA), through which the MC (mobile consumer) receives the data proactively after handover while the MC is moving. When an MC is watching a real-time video in a state of mobility and changing their position from one attachment point to another, the controllers in the SDN preserve the network layout and topology as well as link metrics to transfer updated routes with the occurrence of the handoff or handover scenario, and through the proactive caching mechanism, the previous access router proactively sends the desired packets to the new connected routers. Furthermore, the intra-domain and inter-domain handover processing situations in the SDPCACM for NDNA are described here in detail. Moreover, we conduct a simulation of the proposed SDPCACM for NDN that offers an illustrative methodology and parameter configuration for virtual machines (VMs), OpenFlow switches, and an ODL controller. The simulation result demonstrates that the proposed scheme has significant improvements in terms of CPU usage, reduced delay time, jitter, throughput, and packet loss ratio.

Funder

Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3