Abstract
The hardware of the matrix inversion architecture using QR decomposition with Givens Rotations (GR) and a back substitution (BS) block is required for many signal processing algorithms. However, the hardware of the GR algorithm requires the implementation of complex operations, such as the reciprocal square root (RSR), which is typically implemented using LookUp Table (LUT) and COordinate Rotation DIgital Computer (CORDICs), among others, conveying to either high-area consumption or low throughput. This paper introduces an Field-Programmable Gate Array (FPGA)-based full matrix inversion architecture using hybrid piecewise polynomial approximation systolic cells. In the design, a hybrid segmentation technique was incorporated for the implementation of piecewise polynomial systolic cells. This hybrid approach is composed by an external and internal segmentation, where the first is nonuniform and the second is uniform, fitting the curve shape of the complex functions achieving a better signal-quantization-to noise-ratio; furthermore, it improves the time performance and area resources. Experimental results reveal a well-balanced improvement in the design achieving high throughput and, hence, less resource utilization in comparison to state-of-the-art FPGA-based architectures. In our study, the proposed design achieves 7.51 Mega-Matrices per second for performing 4 × 4 matrix operations with a latency of 12 clock cycles; meanwhile, the hardware design requires only 1474 slice registers, 1458 LUTs in an FPGA Virtex-5 XC5VLX220T, and 1474 slice registers and 1378 LUTs when a FPGA Virtex-6 XC6VLX240T is used.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献