Vehicular Navigation Based on the Fusion of 3D-RISS and Machine Learning Enhanced Visual Data in Challenging Environments

Author:

Sun YunlongORCID,Guan LianwuORCID,Wu Menghao,Gao Yanbin,Chang Zhanyuan

Abstract

Based on the 3D Reduced Inertial Sensor System (3D-RISS) and the Machine Learning Enhanced Visual Data (MLEVD), an integrated vehicle navigation system is proposed in this paper. In demanding conditions such as outdoor satellite signal interference and indoor navigation, this work incorporates vehicle smooth navigation. Firstly, a landmark is set up and both of its size and position are accurately measured. Secondly, the image with the landmark information is captured quickly by using the machine learning. Thirdly, the template matching method and the Extended Kalman Filter (EKF) are then used to correct the errors of the Inertial Navigation System (INS), which employs the 3D-RISS to reduce the overall cost and ensuring the vehicular positioning accuracy simultaneously. Finally, both outdoor and indoor experiments are conducted to verify the performance of the 3D-RISS/MLEVD integrated navigation technology. Results reveal that the proposed method can effectively reduce the accumulated error of the INS with time while maintaining the positioning error within a few meters.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference39 articles.

1. Global Positioning System: Signals, Measurements, and Performance;Misra,2011

2. Global positioning system, theory and practice, 5th edition

3. Strapdown Inertial Navigation Technology;Titterton,2004

4. Two years of Visual Odometry on the Mars Exploration Rovers

5. Novel approach for mobile robot localization using monocular vision;Zhong;Proc. SPIE,2003

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3