Activeness: A Novel Neural Coding Scheme Integrating the Spike Rate and Temporal Information in the Spiking Neural Network

Author:

Wang Zongxia123ORCID,Yu Naigong123ORCID,Liao Yishen123

Affiliation:

1. Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China

2. Beijing Key Laboratory of Computational Intelligence and Intelligent System, Beijing 100124, China

3. Engineering Research Center of Digital Community, Ministry of Education, Beijing 100124, China

Abstract

In neuromorphic computing, the coding method of spiking neurons serves as the foundation and is crucial for various aspects of network operation. Existing mainstream coding methods, such as rate coding and temporal coding, have different focuses, and each has its own advantages and limitations. This paper proposes a novel coding scheme called activeness coding that integrates the strengths of both rate and temporal coding methods. It encompasses precise timing information of the most recent neuronal spike as well as the historical firing rate information. The results of basic characteristic tests demonstrate that this encoding method accurately expresses input information and exhibits robustness. Furthermore, an unsupervised learning method based on activeness-coding triplet spike-timing dependent plasticity (STDP) is introduced, with the MNIST classification task used as an example to assess the performance of this encoding method in solving cognitive tasks. Test results show an improvement in accuracy of approximately 4.5%. Additionally, activeness coding also exhibits potential advantages in terms of resource conservation. Overall, activeness offers a promising approach for spiking neural network encoding with implications for various applications in the field of neural computation.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3