Improved Attention Mechanism for Human-like Intelligent Vehicle Trajectory Prediction

Author:

Shen Chuanliang1ORCID,Xiao Xiao1ORCID,Li Shengnan1,Tong Yan1

Affiliation:

1. State Key Laboratory of Automotive Simulation and Control, Jilin University, Changchun 130025, China

Abstract

In order to overcome the low long-term predictive accuracy associated with mainstream prediction models and the limited consideration of driver characteristics, this study presents an enhanced attention mechanism for human-like trajectory prediction, which is based on Long Short-Term Memory (LSTM). A novel database structure is proposed that incorporates data about driving style and driving intent, pertaining to human factors. By utilizing the convolution computation of Convolutional Social-Long Short-Term Memory (CS-LSTM) for surrounding vehicles, spatial feature extraction around the target vehicle is achieved. Simultaneously, we introduce a dynamic driving style recognition model and a human-like driving intent recognition model to fulfill the output of the human-like module. From a temporal perspective, we employ a decoder attention mechanism to reinforce the emphasis on key historical information, while refining the attention mechanism based on driving style for human-like weight assignment. Comparative analysis with other models indicates that the proposed Driving Style-based Attention-enhanced Convolutional Social-Long Short-Term Memory (DACS-LSTM) model exhibits notable advantages in predicting human-like trajectories for long-term tasks. Visualizing the predicted trajectories of both the Attention-enhanced Convolutional Social-Long Short-Term Memory (ACS-LSTM) and our proposed model, and analyzing the impact of the human-like module on the predicted trajectory, shows that our model’s predicted trajectory aligns more closely with the actual one. By comparing the weight distribution of the conventional attention mechanism and the enhanced attention mechanism proposed here, and analyzing the trajectory changes in conjunction with the driving styles, it becomes evident that our proposed model offers a marked improvement.

Funder

Science and Technology Development Project of Jilin Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3