Experimental Characterization of Millimeter-Wave Substrate-Integrated Waveguide Interconnect with Slot Transition in Flexible Printed Circuit Boards

Author:

Kim MyunghoiORCID,Bae Bumhee,Cheon Jeongnam

Abstract

For high-speed communication services such as 5G technology, the use of millimeter-wave (mmWave) components substantially increases in mobile applications. The interconnect based on a substrate-integrated waveguide (SIW) is an efficient solution for connecting these devices. However, the SIW characteristics in the mmWave frequency range are not sufficiently presented from the practical viewpoint. In this paper, the experimental characterization of mmWave SIWs in flexible printed circuit boards (FPCBs) and their simulation results are presented. A practical method using balanced/single slot transition is proposed for microstrip-to-SIW transition. Using a full-wave simulation and genetic algorithm, the proposed slot technique is optimized. It is experimentally demonstrated that the cutoff frequency affects the operating band of the SIW differently. The per-unit-length losses of the full-mode and half-mode SIWs are obtained as 0.0375 dB/mm and 0.0609 dB/mm, respectively. Using the measurements, the SIW type effect on the transmission loss is quantitatively analyzed, and the loss is increased up to 62.4% at 39 GHz.

Funder

Samsung

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3