Abstract
For high-speed communication services such as 5G technology, the use of millimeter-wave (mmWave) components substantially increases in mobile applications. The interconnect based on a substrate-integrated waveguide (SIW) is an efficient solution for connecting these devices. However, the SIW characteristics in the mmWave frequency range are not sufficiently presented from the practical viewpoint. In this paper, the experimental characterization of mmWave SIWs in flexible printed circuit boards (FPCBs) and their simulation results are presented. A practical method using balanced/single slot transition is proposed for microstrip-to-SIW transition. Using a full-wave simulation and genetic algorithm, the proposed slot technique is optimized. It is experimentally demonstrated that the cutoff frequency affects the operating band of the SIW differently. The per-unit-length losses of the full-mode and half-mode SIWs are obtained as 0.0375 dB/mm and 0.0609 dB/mm, respectively. Using the measurements, the SIW type effect on the transmission loss is quantitatively analyzed, and the loss is increased up to 62.4% at 39 GHz.
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献