A Fading Tolerant Phase-Sensitive Optical Time Domain Reflectometry Based on Phasing-Locking Structure

Author:

Zhang Xuping,Zheng Yunyin,Zhang Chi,Dong Qiuhao,Zhao Shisong,Liu Jingxiao,Wang Feng,Zhang Yixin,Xiong Fei

Abstract

The demand for phase-sensitive optical time domain reflectometry (φ-OTDR), which is capable of reconstructing external disturbance accurately, is increasing. However, φ-OTDR suffers from fading where Rayleigh backscattering traces (RBS) have low amplitude and may be lower than the noise floor. Therefore, signal-to-noise ratio (SNR) is reduced. In conventional coherent φ-OTDR, an acoustic optical modulator (AOM), which consists of an RF driving source and an acousto-optic crystal, is commonly used to generate optical pulses and frequency shifts. Since RF driving and external modulation signals come from an independent oscillation source, every intermediate frequency (IF) trace has a different phase bias. Therefore, it is difficult to average the IF signals directly for noise reduction. In this paper, a coherent φ-OTDR system based on phase-locking structure was proposed. This structure provided a clock homologous carrier signal, a modulation signal and a data acquisition (DAQ) trigger signal. Then, moving average methods were taken on IF signals before phase demodulating to reduce the overall noise floor of the system. This new φ-OTDR is more tolerant to fading, which can provide higher accuracy for vibration reconstruction. The frequency response range of vibration was as low as 1Hz, and a 25dB improvement of SNR was achieved.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3