Abstract
We present an experimental demonstration of a thermoelectric sensor coupled with a nanoantenna as an alternative option for detecting infrared energy. Two nanoantenna design (single element and an array) variations based on Yagi-Uda technology and one separate nano-thermoelectric junction array were fabricated and tested. The nanoantennas were tuned to operate and respond at a center wavelength of 1550 nm (193.5 THz) optical C-band window, but they also exhibited a resonance response when excited by lasers of various wavelengths (650 nm and 940 nm). The radiation-induced electric currents in the nanoantennas, coupled with a nano-thermoelectric sensor, produced a potential difference as per the Seebeck effect. With respect to the uniform thermal measurements of the reference nanoantenna, the experiments confirmed the detection properties of the proposed nanoantennas; the single element detected a peak percentage voltage hike of 28%, whereas the array detected a peak percentage voltage hike of 80% at the center wavelength. Compared to state-of-the-art thermoelectric designs, this was the first time that such peak percentage voltages were experimentally reported following a planar design based on the Seebeck principle.
Funder
Deanship of Scientific Research, King Saud University
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献