Cyber Resilience Meta-Modelling: The Railway Communication Case Study

Author:

Bellini EmanueleORCID,Marrone StefanoORCID,Marulli FiammettaORCID

Abstract

Recent times have demonstrated how much the modern critical infrastructures (e.g., energy, essential services, people and goods transportation) depend from the global communication networks. However, in the current Cyber-Physical World convergence, sophisticated attacks to the cyber layer can provoke severe damages to both physical structures and the operations of infrastructure affecting not only its functionality and safety, but also triggering cascade effects in other systems because of the tight interdependence of the systems that characterises the modern society. Hence, critical infrastructure must integrate the current cyber-security approach based on risk avoidance with a broader perspective provided by the emerging cyber-resilience paradigm. Cyber resilience is aimed as a way absorb the consequences of these attacks and to recover the functionality quickly and safely through adaptation. Several high-level frameworks and conceptualisations have been proposed but a formal definition capable of translating cyber resilience into an operational tool for decision makers considering all aspects of such a multifaceted concept is still missing. To this end, the present paper aims at providing an operational formalisation for cyber resilience starting from the Cyber Resilience Ontology presented in a previous work using model-driven principles. A domain model is defined to cope with the different aspects and “resilience-assurance” processes that it can be valid in various application domains. In this respect, an application case based on critical transportation communications systems, namely the railway communication system, is provided to prove the feasibility of the proposed approach and to identify future improvements.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3