A Highly Configurable High-Level Synthesis Functional Pattern Library

Author:

Huang Lan,Gao Teng,Li Dalin,Wang Zihao,Wang KangpingORCID

Abstract

FPGA has recently played an increasingly important role in heterogeneous computing, but Register Transfer Level design flows are not only inefficient in design, but also require designers to be familiar with the circuit architecture. High-level synthesis (HLS) allows developers to design FPGA circuits more efficiently with a more familiar programming language, a higher level of abstraction, and automatic adaptation of timing constraints. When using HLS tools, such as Xilinx Vivado HLS, specific design patterns and techniques are required in order to create high-performance circuits. Moreover, designing efficient concurrency and data flow structures requires a deep understanding of the hardware, imposing more learning costs on programmers. In this paper, we propose a set of functional patterns libraries based on the MapReduce model, implemented by C++ templates, which can quickly implement high-performance parallel pipelined computing models on FPGA with specified simple parameters. The usage of this pattern library allows flexible adaptation of parallel and flow structures in algorithms, which greatly improves the coding efficiency. The contributions of this paper are as follows. (1) Four standard functional operators suitable for hardware parallel computing are defined. (2) Functional concurrent programming patterns are described based on C++ templates and Xilinx HLS. (3) The efficiency of this programming paradigm is verified with two algorithms with different complexity.

Funder

Jilin Provincial Key Laboratory of Big Data Intelligent Computing

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference29 articles.

1. High-Level Synthesis: From Algorithm to Digital Circuits;Coussy,2008

2. SpinalHDL Documentationhttps://github.com/SpinalHDL/SpinalHDL

3. Particle swarm optimization with particles having quantum behavior;Sun;Proc. Congr. Evol. Comput.,2004

4. A global search strategy of quantum-behaved particle swarm optimization;Sun;Proc. IEEE Conf. Cybern. Intell. Syst.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3