Numerical Simulations of Light Scattering in Soft Anisotropic Fibrous Structures and Validation of a Novel Optical Setup from Fibrous Media Characterization

Author:

di Bartolo Francesco,Vignali EmanueleORCID,Gasparotti EmanueleORCID,Malacarne AntonioORCID,Landini LuigiORCID,Celi SimonaORCID

Abstract

The insight of biological microstructures is at the basis of understanding the mechanical features and the potential pathologies of tissues, like the blood vessels. Different techniques are available for this purpose, like the Small Angle Light Scattering (SALS) approach. The SALS method has the advantage of being fast and non-destructive, however investigation of its physical principles is still required. Within this work, a numerical study for SALS irradiation of soft biological fibrous tissues was carried out through in-silico simulations based on a Monte Carlo approach to evaluate the effect of the thickness of the specimen. Additionally, the numerical results were validated with an optical setup based on SALS technique for the characterization of fibrous samples with dedicated tests on four 3D-printed specimens with different fibers architectures. The simulations revealed two main regions of interest according to the thickness (thk) of the analyzed media: a Fraunhofer region (thk < 0.6 mm) and a Multiple Scattering region (thk > 1 mm). Semi-quantitative information about the tissue anisotropy was successfully gathered by analyzing the scattered light spot. Moreover, the numerical results revealed a remarkable coherence with the experimental data, both in terms of mean orientation and dispersion of fibers.

Funder

Fondazione Pisa

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3