Novel BSSSO-Based Deep Convolutional Neural Network for Face Recognition with Multiple Disturbing Environments

Author:

Soni Neha,Sharma Enakshi Khular,Kapoor Amita

Abstract

Face recognition technology is presenting exciting opportunities, but its performance gets degraded because of several factors, like pose variation, partial occlusion, expression, illumination, biased data, etc. This paper proposes a novel bird search-based shuffled shepherd optimization algorithm (BSSSO), a meta-heuristic technique motivated by the intuition of animals and the social behavior of birds, for improving the performance of face recognition. The main intention behind the research is to establish an optimization-driven deep learning approach for recognizing face images with multiple disturbing environments. The developed model undergoes three main steps, namely, (a) Noise Removal, (b) Feature Extraction, and (c) Recognition. For the removal of noise, a type II fuzzy system and cuckoo search optimization algorithm (T2FCS) is used. The feature extraction is carried out using the CNN, and landmark enabled 3D morphable model (L3DMM) is utilized to efficiently fit a 3D face from a single uncontrolled image. The obtained features are subjected to Deep CNN for face recognition, wherein the training is performed using novel BSSSO. The experimental findings on standard datasets (LFW, UMB-DB, Extended Yale B database) prove the ability of the proposed model over the existing face recognition approaches.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference26 articles.

1. A Fast Uyghur Text Detector for Complex Background Images

2. Assistance System (AS) for Vehicles on Indian Roads: A Case Study;Soni,2018

3. TensorFlow 1.x Deep Learning Cookbook: Over 90 Unique Recipes to Solve Artificial-Intelligence Driven Problems with Python;Gulli,2017

4. Artificial Intelligence in Business: From Research and Innovation to Market Deployment

5. Face Recognition Systems: A Survey

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3