A UWB Antenna Array Integrated with Multimode Resonator Bandpass Filter

Author:

Ahmed SharifORCID,Kim Geok Tan,Alias Mohamad Yusoff,Hossain FerdousORCID,Alsariera Hussein,Abdaziz Azlan,Soh Ping JackORCID

Abstract

This paper presents a novel design of a modified ultrawideband (UWB) antenna array integrated with a multimode resonator bandpass filter. First, a single UWB antenna is modified and studied, using a P-shape radiated patch instead of a full elliptical patch, for wide impedance bandwidth and high realized gain. Then, a two-element UWB antenna array is developed based on this modified UWB antenna with an inter-element spacing of 0.35 λL, in which λL is the free space wavelength at the lower UWB band edge of 3.1 GHz, compared to 0.27 λL of a reference UWB antenna array designed using a traditional elliptical patch shape. The partial ground plane is designed with a trapezoidal angle to enhance matching throughout the UWB frequency range. The mutual coupling reduction of a modified UWB antenna array enhances the reflection coefficient, bandwidth, and realized gain, maintaining the same size of 1.08 λ0 × 1.08 λ0 × 0.035 λ0 at 6.5 GHz center frequency as that of the reference UWB antenna array. The UWB antenna array performance is investigated at different inter-element spacing distances between the radiated elements. To add filtering capability to the UWB antenna array and eliminate interference from the out-of-band frequencies, a multimode resonator (MMR) bandpass filter (BPF) is incorporated in the feedline while maintaining a compact size. The measurement results showed a close agreement with simulated results. The proposed UWB filtering antenna array design achieved a wide fractional bandwidth of more than 109.87%, a high realized gain of more than 7.4 dBi, and a compact size of 1.08 λ0 × 1.08 λ0 × 0.035 λ0 at 6.5 GHz center frequency. These advantages make the proposed antenna suitable for UWB applications such as indoor tracking, radar systems and positioning applications.

Funder

Multimedia University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3