Scale-Adaptive KCF Mixed with Deep Feature for Pedestrian Tracking

Author:

Zhou Yang,Yang Wenzhu,Shen Yuan

Abstract

Pedestrian tracking is an important research content in the field of computer vision. Tracking is achieved by predicting the position of a specific pedestrian in each frame of a video. Pedestrian tracking methods include neural network-based methods and traditional template matching-based methods, such as the SiamRPN (Siamese region proposal network), the DASiamRPN (distractor-aware SiamRPN), and the KCF (kernel correlation filter). The KCF algorithm has no scale-adaptive capability and cannot effectively solve the occlusion problem, and because of many defects of the HOG (histogram of oriented gradient) feature that the KCF uses, the tracking target is easy to lose. For those defects of the KCF algorithm, an improved KCF model, the SKCFMDF (scale-adaptive KCF mixed with deep feature) algorithm was designed. By introducing deep features extracted by a newly designed neural network and by introducing the YOLOv3 (you only look once version 3) object detection algorithm, which was also improved for more accurate detection, the model was able to achieve scale adaptation and to effectively solve the problem of occlusion and defects of the HOG feature. Compared with the original KCF, the success rate of pedestrian tracking under complex conditions was increased by 36%. Compared with the mainstream SiamRPN and DASiamRPN models, it was still able to achieve a small improvement.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference21 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Testing of an Autonomous Navigation Unmanned Surface Vehicle for Buoy Inspection;Journal of Marine Science and Engineering;2024-05-14

2. Robust Aerial Person Detection With Lightweight Distillation Network for Edge Deployment;IEEE Transactions on Geoscience and Remote Sensing;2024

3. Research on Pedestrian Tracking in Urban Rail Transit Stations Based on Adaptive Kalman Filtering;Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering;2024

4. Object Tracking in SWIR Imaging Based on Both Correlation and Robust Kalman Filters;IEEE Access;2023

5. Target Detection and Adaptive Tracking Based on Multisensor Data Fusion in a Smoke Environment;2022 8th International Conference on Control, Automation and Robotics (ICCAR);2022-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3