Abstract
The paper proposes an effective continuous gesture recognition method, which includes two modules: segmentation and recognition. In the segmentation module, the video frames are divided into gesture frames and transitional frames by using the information of hand motion and appearance, and continuous gesture sequences are segmented into isolated sequences. In the recognition module, our method exploits the spatiotemporal information embedded in RGB and depth sequences. For the RGB modality, our method adopts Convolutional Long Short-Term Memory Networks to learn long-term spatiotemporal features from short-term spatiotemporal features obtained from a 3D convolutional neural network. For the depth modality, our method converts a sequence into Dynamic Images and Motion Dynamic Images through weighted rank pooling and feed them into Convolutional Neural Networks, respectively. Our method has been evaluated on both ChaLearn LAP Large-scale Continuous Gesture Dataset and Montalbano Gesture Dataset and achieved state-of-the-art performance.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Reference56 articles.
1. Multi-Layered Gesture Recognition with Kinect;Jiang;J. Mach. Learn. Res.,2015
2. Action and Gesture Temporal Spotting with Super Vector Representation;Peng,2014
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献