SSOR Preconditioned Gauss-Seidel Detection and Its Hardware Architecture for 5G and beyond Massive MIMO Networks

Author:

Chataut RobinORCID,Akl Robert,Dey Utpal Kumar,Robaei Mohammadreza

Abstract

With the limitedness of the sub-6 GHz bandwidth, the world is exploring a thrilling wireless technology known as massive MIMO. This wireless access technology is swiftly becoming key for 5G, B5G, and 6G network deployment. The massive MIMO system brings together antennas at both base stations and the user terminals to provide high spectral service. Despite the fact that massive MIMO offers astronomical benefits such as low latency, high data rate, improved array gain, and far better reliability, it faces several implementation challenges due to the hundreds of antennas at the base station. The signal detection at the base station during the uplink is one of the critical issues in this technology. Detection of user signal becomes computationally complex with a multitude of antennas present in the massive MIMO systems. This paper proposes a novel preconditioned and accelerated Gauss–Siedel algorithm referred to as Symmetric Successive Over-relaxation Preconditioned Gauss-Seidel (SSORGS). The proposed algorithm will address the signal detection challenges associated with massive MIMO technology. Furthermore, we enhance the convergence rate of the proposed algorithm by introducing a novel Symmetric Successive Over-relaxation preconditioner (SSOR) scheme and an initialization scheme based on the instantaneous channel condition between the base station and the user. The simulation results show that the proposed algorithm referred to as Symmetric Successive Over-relaxation Preconditioned Gauss-Seidel (SSORGS) provides optimal BER performance. At BER =10−3, over the range of SNR, the SSORGS algorithm performs better than the traditional algorithms. Additionally, the proposed algorithm is computationally more efficient than the traditional algorithms. Furthermore, we designed a comprehensive hardware architecture for the SSORGS algorithm to find the interrelated components necessary to build the actual physical system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference40 articles.

1. Ericsson.comhttps://www.ericsson.com/en/mobility-report/reports/june-2019/mobile-data-traffic-outlook

2. Massive MIMO: An Introduction

3. Scaling Up MIMO: Opportunities and Challenges with Very Large Arrays

4. Massive MIMO for next generation wireless systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3