Pixel-Coordinate-Induced Human Pose High-Precision Estimation Method

Author:

Sun Xuefei1,Adamu Mohammed Jajere1ORCID,Zhang Ruifeng1,Guan Xin1,Li Qiang1

Affiliation:

1. School of Microelectronicss, Tianjin University, Tianjin 300072, China

Abstract

Accurately estimating human pose is crucial for providing feedback during exercises or musical performances, but the complex and flexible nature of human joints makes it challenging. Additionally, traditional methods often neglect pixel coordinates, which are naturally present in high-resolution images of the human body. To address this issue, we propose a novel human pose estimation method that directly incorporates pixel coordinates. Our method adds a coordinate channel to the convolution process and embeds pixel coordinates into the feature map, while also using coordinate attention to capture position- and structure-sensitive features. We further reduce the network parameters and computational cost by using small-scale convolution kernels and a smooth activation function in residual blocks. We evaluate our model on the MPII Human Pose and COCO Keypoint Detection datasets and demonstrate improved accuracy, highlighting the importance of directly incorporating coordinate location information in position-sensitive tasks.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin, China

Tianjin University Innovation Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference48 articles.

1. Liu, W., Bao, Q., Sun, Y., and Mei, T. (2021). Recent Advances in Monocular 2D and 3D Human Pose Estimation: A Deep Learning Perspective. arXiv.

2. Human pose estimation and its application to action recognition: A survey;Song;J. Vis. Commun. Image Represent.,2021

3. Dalal, N., and Triggs, B. (2005, January 20–25). Histograms of oriented gradients for human detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA, USA.

4. Pictorial Structures for Object Recognition;Felzenszwalb;Int. J. Comput. Vis.,2005

5. SimpleCut: A simple and strong 2D model for multi-person pose estimation;Munea;Comput. Vis. Image Underst.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3