AWOA: An Advanced Whale Optimization Algorithm for Signal Detection in Underwater Magnetic Induction Multi-Input–Multi-Output Systems

Author:

Gao Guohong12,Wang Jianping2ORCID,Zhang Jie2

Affiliation:

1. School of Information Engineering, Wuhan University of Technology, Wuhan 430070, China

2. School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

With the increasing exploitation and use of marine resources, the limitations of acoustic, optical, and radio frequency technologies for underwater communications have become increasingly apparent. Magnetic induction (MI) is a new communication technology that enables wireless data transmission via magnetic field coupling between transmitting and receiving coils. MI offers advantages such as channel stability, small antenna size, and no multi-path loss. Multi-input–multi-output (MIMO) is a multi-antenna technology that significantly increases system capacity and spectrum utilization without increasing bandwidth. The whale optimization algorithm (WOA) is a well-known bio-inspired algorithm that mimics the hunting behavior of whales to optimize swarm intelligence. This paper proposes a model for an underwater MIMO communication system based on magnetic induction. We then construct a signal detection algorithm for MI-MIMO systems using the advanced whale optimization algorithm (AWOA) and conduct simulation experiments to compare the performance and complexity of three standard signal detection algorithms: zero-forcing (ZF), minimum mean square error (MMSE), and maximum likelihood (ML). The experimental results show that AWOA achieves suboptimal results, as its bit error rate (BER) is close to that of the ML algorithm. Furthermore, the complexity of AWOA is comparable to that of the MMSE strategy. This work supports the development of a high-performance MI-based underwater communication system.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference44 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3