Sequence Segmentation Attention Network for Skeleton-Based Action Recognition

Author:

Zhang Yujie1,Cai Haibin1

Affiliation:

1. Software Engineering Institute, East China Normal University, Shanghai 200062, China

Abstract

With skeleton-based action recognition, it is crucial to recognize the dependencies among joints. However, the current methods are not able to capture the relativity of the various joints among the frames, which is extremely helpful because various parts of the body are moving at the same time. In order to solve this problem, a new sequence segmentation attention network (SSAN) is presented. The successive frames are encoded in each of the segments that make up the skeleton sequence. Then, we provide a self-attention block that may record the associated information among various joints in successive frames. In order to better recognize comparable behavior, a model of external segment action attention is employed to acquire the deep interrelation information among parts. Compared with the most advanced approaches, we have shown that the proposed method performs better on NTU RGB+D and NTU RGB+D 120.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Temporal Enhancement Spatial-Temporal Graph Convolutional Networks;2023 5th International Conference on Machine Learning, Big Data and Business Intelligence (MLBDBI);2023-12-15

2. Action Recognition Based on GCN with Adjacency Matrix Generation Module and Time Domain Attention Mechanism;Symmetry;2023-10-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3