Substrate Integrated Waveguide Based Cavity-Backed Circularly-Polarized Antenna for Satellite Communication

Author:

Choubey Prem Narayan1ORCID,Zhang Xuewei1,He Tong1,Hao Nan1,Xu Kuiwen12ORCID

Affiliation:

1. Intelligent Wireless Network Department, Zhejiang Laboratory, Hangzhou 311121, China

2. College of Electronic and Information Engineering, Hangzhou Dianzi University, Hangzhou 311121, China

Abstract

This article presents the methodology to design a single-fed circularly-polarized antenna with low front-to-back ratio (FBR). A circular-patch (CPatch) antenna has been incorporated within the rectangular-cavity, made of, substrate integrated waveguide (SIW). The size of the CPatch and the SIW cavity has been chosen appropriately, in a manner, that the both resonators dominant mode coincide. This arrangement has been adopted to realize the basic radiating unit with no surface-wave and the significantly lower FBR. The circularly polarization has been excited through shorting the periphery of CPatch radiator to the “one of the two metallic grounds” of this SIW cavity. The patch periphery has been shorted from two distinct points, separated by the quarter wavelength—over center frequency of working band. The antenna has been designed and manufactured over Rogers RT/Duroid 5880 substrate with dielectric constant (εr) of 2.2, loss-tangent (tan δ, at 10 GHz) of 0.0009, and substrate height of 0.508 mm. Southwest® end launcher (SEL) along with SIW-to-GCPW (Grounded Co-Planar Waveguide) transition has been used here to facilitate the measurement of antenna’s electrical and the radiation performance. The designed antenna’s impedance bandwidth and the 3 dB axial-ratio (AR) bandwidth is 9.5% and the 2.3%, respectively. It’s simulated and the measured peak gain, within working frequency band, is higher than 8.5dBic. The proposed antenna’s FBR is antenna is significantly lower than the conventional circularly-polarized antennas. Through comparative study, with work in open literature, it has been demonstrated that the designed antenna, based on proposed method, can a potential candidate for applicable in satellite and in the other spaceborne communication system’s module—at ground and in the space station.

Funder

National Key Research and Development Program of China

Key Research Project of Zhejiang Laboratory

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3