Summarization of Videos with the Signature Transform

Author:

de Curtò J.1234ORCID,de Zarzà I.1234ORCID,Roig Gemma3ORCID,Calafate Carlos T.2ORCID

Affiliation:

1. Centre for Intelligent Multidimensional Data Analysis, HK Science Park, Shatin, Hong Kong

2. Departamento de Informática de Sistemas y Computadores, Universitat Politècnica de València, 46022 València, Spain

3. Informatik und Mathematik, GOETHE-University Frankfurt am Main, 60323 Frankfurt am Main, Germany

4. Estudis d’Informàtica, Multimèdia i Telecomunicació, Universitat Oberta de Catalunya, 08018 Barcelona, Spain

Abstract

This manuscript presents a new benchmark for assessing the quality of visual summaries without the need for human annotators. It is based on the Signature Transform, specifically focusing on the RMSE and the MAE Signature and Log-Signature metrics, and builds upon the assumption that uniform random sampling can offer accurate summarization capabilities. We provide a new dataset comprising videos from Youtube and their corresponding automatic audio transcriptions. Firstly, we introduce a preliminary baseline for automatic video summarization, which has at its core a Vision Transformer, an image–text model pre-trained with Contrastive Language–Image Pre-training (CLIP), as well as a module of object detection. Following that, we propose an accurate technique grounded in the harmonic components captured by the Signature Transform, which delivers compelling accuracy. The analytical measures are extensively evaluated, and we conclude that they strongly correlate with the notion of a good summary.

Funder

Universitat Politècnica de València

GOETHE-University Frankfurt

Center for Data Science & AI

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3